Chapitre 9

Continuité

Notion de continuité 9.1

9.1.1 **Définition**

Soit f une fonction définie sur un intervalle \mathbb{I} .

- 1. Dire qu'une fonction f est continue en a $(a \in \mathbb{I})$ signifie que $\lim_{x \to a} f(x) = f(a)$
- 2. Dire qu'une fonction f est continue sur I signifie que f est continue en tout $a \in \mathbb{I}$

Conséquence graphique Une fonction f est continue sur un intervalle \mathbb{I} lorsque sa représentation graphique sur I peut être tracé sans lever le crayon.

Exemples

- 1. La fonction carrée est continue sur \mathbb{R}

2. La fonction carrect est continue sur
$$]0; +\infty[$$
 et sur $]-\infty; 0[$
3. $x\mapsto |x|$ $\begin{cases} =x \text{ si } x>0\\ =-x \text{ si } x<0 \end{cases}$
 $|0|=0$
 $\lim_{x\to 0} |x| = \lim_{x\to 0} x=0$
 $x>0$
 $\lim_{x\to 0} |x| = \lim_{x\to 0} -x=0$
 $\lim_{x\to 0} |x| = \lim_{x\to 0} -x=0$
 $\lim_{x\to 0} |x| = \lim_{x\to 0} x<0$
La fonction $\lim_{x\to 0} |x|$ est continue en 0.

Contre exemple La fonction partie entière E:

Pour tout réel x, il existe un unique entier n tel que : $n \le E(x) \le n+1$

Par définition : E(x) = n

•Si
$$x \in [-3; -2[E(x) = -3]$$

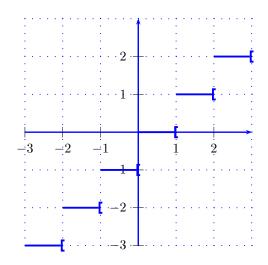
•Si
$$x \in [-2; -1]$$
 $E(x) = -2$

•Si
$$x \in [-1; 0[$$
 $E(x) = -1$

•Si
$$x \in [0; 1]$$
 $E(x) = 0$

•Si
$$x \in [1; 2]$$
 $E(x) = 1$

•Si
$$x \in [2;3]$$
 $E(x) = 2$



$$\lim_{x \to 0} E(x) = 0 \text{ et } \lim_{x \to 0} E(x) = -1$$
$$x > 0 \qquad x < 0$$

$$E(x) = 0$$

E n'est pas continue en 0

Conséquence La somme et le produit de fonctions continues sur un intervalle \mathbb{I} sont continues sur \mathbb{I} .

Dérivabilité et continuité

Si f est dérivable en a alors f est continue en a. Si f est dérivable sur un intervalle $\mathbb I$ alors f est continue sur $\mathbb I$.

Démonstration f est dérivable en a signifie que

 $t: h \mapsto \frac{f(a+h) - f(a)}{h}$ admet une limite finie en 0.

$$t(h) = \frac{f(a+h) - f(a)}{h}$$
$$h \cdot t(h) = f(a+h) - f(a)$$

$$h \cdot t(h) = f(a+h) - f(a)$$

$$f(a) + h \cdot t(h) = f(a+h)$$

$$\lim_{h \to 0} t(h) = f'(a)$$

$$\operatorname{donc} \lim_{h \to 0} f(a+h) = f(a)$$

$$\lim_{x \to a} f(x) = f(a)$$

donc
$$\lim f(a+h) = f(a)$$

$$\lim f(x) = f(a)$$

donc f est continue en a.

Attention la réciproque de cette propriété est fausse :

1. $f(x) = |x| \text{ sur } \mathbb{R}$ f n'est pas dérivable en 0 mais f est continue en 0.

2. $g(x) = \sqrt{x}$ définie sur $[0; +\infty[$ g n'est pas dérivable en 0 mais g est continue en 0.

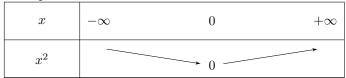
9.1.3 Continuité des fonctions usuelles

- Les fonctions polynômes sont dérivables sur $\mathbb R$ donc continues sur $\mathbb R$.
- Les fonctions rationelles sont dérivables donc continues sur les intervalles sur lesquelles elles sont définies.
- La fonction exp est dérivable donc continue sur \mathbb{R} .
- La fonction racine carrée est continue sur $[0; +\infty[$.

9.2 Fonctions continues et résolution d'équations

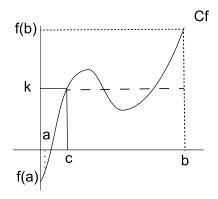
Convention Dans un tableau de variation, une flèche \nearrow ou \searrow indique que la fonction est continue et strictement monotone sur l'intervalle.

Par exemple:



La fonction carrée est continue et strictement décroissante sur $]-\infty;0]$, continue et strictement croissante sur $[0;+\infty[$.

9.2.1 Théorème des valeurs intermédiaires



Théorème (admis) Si f est continue sur un intervalle [a;b] alors pour tout réel k compris entre f(a) et f(h), il existe (au moins) un réel $c \in [a;b]$ tel que f(a) = k

9.2.2 Fonctions continues et strictement monotones sur [a;b]

Corollaire Si f est continue et strictement monotone sur un intervalle [a;b] alors pour tout réel k compris entre f(a) et f(b) il existe un unique réel c dans [a;b] tel que f(a)=k