Chapitre 10

Convergence des suites monotones

Suites majorées, minorées, bornées 10.1

Définition

- Une suite (U_n) est majorée signifie qu'il existe un réel M tel que pour $n \in \mathbb{N}, U_n \leq M$.
- Une suite (U_n) est minorée signifie qu'il existe un réel M tel que pour $n \in \mathbb{N}, U_n \geq M$.
- Une suite (U_n) est bornée signifie qu'elle est à la fois majorée et minorée.

Exemple $U_n = 1 - \frac{1}{n+1}$

- Pour tout $n \in \mathbb{N}, 1 \frac{1}{n+1} \le 1$ donc (U_n) est majorée. Pour tout $n \in \mathbb{N}, n+1 \ge 1$ donc $1 \frac{1}{n+1} \ge 0$ d'où (U_n) est minorée.
- (U_n) est donc borné.

10.2 Convergence des suites monotones

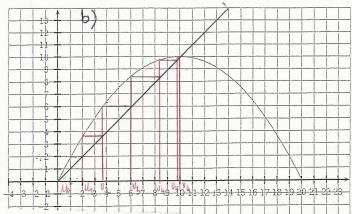
10.2.1 Théorème (admis)

- Si une suite est croissante et majorée alors elle est convergente.
- Si une suite est décroissante et minorée alors elle est convergente.

On considère la suite (u_n) définie sur N par :

$$u_0 = 1$$
 et, pour tout nombre entier naturel n , $u_{n+1} = \frac{1}{10} u_n (20 - u_n)$.

- 1. Soit f la fonction définie sur [0; 20] par $f(x) = \frac{1}{10}x(20-x)$.
- a) Etudier les variations de f sur [0; 20].
- b) On donne, la courbe représentative C de la fonction f dans un repère orthonormal du plan. Représenter, sur l'axe des abscisses, à l'aide du graphique, les cinq premiers termes de la suite $(u_n)_{n\geq 0}$
- **2.** Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $1 \le u_n \le u_{n+1} \le 10$.
- 3. En déduire la convergence de la suite $(u_n)_{n>0}$.
- 4. On note ℓ sa limite. Justifier que ℓ vérifie $\ell = \frac{1}{10} \ell(20 \ell)$. En déduire la valeur de ℓ .



Exemple

$$1(a) \ f = u \times v \qquad f' = u'v + v'u \\ f(x) = \frac{1}{10}x(20 - x) \\ u(x) = \frac{1}{10}x \qquad v(x) = 20 - x \\ u'(x) = \frac{1}{10} \qquad v'(x) = -1 \\ f'(x) = \frac{1}{10}(20 - x) - \frac{1}{10}x \\ f'(x) = 2 - \frac{1}{5}x - \frac{1}{10}x \\ f'(x) = \frac{10 - x}{5} > 0 \\ \Leftrightarrow 10 - x > 0 \\ \Leftrightarrow x > 10$$

2. Soit P_n : " $1 \le U_n \le U_{n+1} \le 10$ " Vérifions que P_0 est vraie : $U_0 = 1$ et $U_1 = 1, 9$ donc $1 \le U_0 \le U_1 \le 10$ Donc P_n est vraie au rang 0.

On suppose que pour un entier $n, 1 \le U_n \le U_{n+1} \le 10$, on doit démontrer que $1 \le U_{n+1} \le U_{n+2} \le 10$. Comme la fonction est croissante sur [0; 10]

$$f(1) \le f(U_n) \le f(U_{n+1}) \le f(10)$$

Soit $1 \le 1, 9 \le U_{n+1} \le U_{n+2} \le 10$

Donc P_n est héréditaire, et par le principe de récurrence, pour $n \in \mathbb{N}$, $1 \le U_n \le U_{n+1} \le 10$.

- 3. Pour tout $n \in \mathbb{N}, U_n \leq U_{n+1}$ donc (U_n) est croissante.
 - Pour tout $n \in \mathbb{N}, U_n \leq 10$ donc (U_n) est majorée.

D'après le théorème, (U_n) est convergente.

4. Pour
$$n \in \mathbb{N}$$
, $U_{n+1} = \frac{1}{10}U_n(20 - U_n)$
Soit $l = \lim_{n \to +\infty} U_n$.

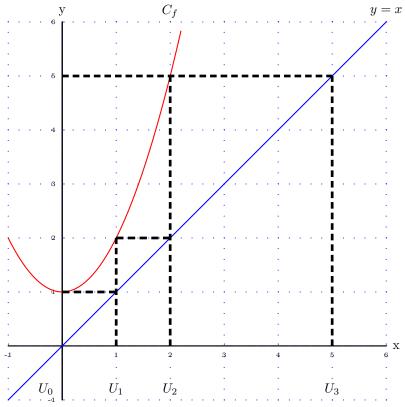
$$\lim_{n \to +\infty} \frac{1}{10}U_n(20 - U_n) = \frac{1}{10}l(20 - l).$$
D'autre par, $\lim_{n \to +\infty} U_{n+1} = l$
Donc $l = \frac{1}{10}l(20 - l)$
 $\Leftrightarrow 10l = 0l - l^2$
 $\Leftrightarrow 0 = 10l - l^2$
 $\Leftrightarrow l(10 - l) = 0$
 $l = 0$ ou $l = 10$
Or pour tout $n \in \mathbb{R}$, $1 \le U_n \le 10$
Donc $\lim_{n \to +\infty} U_n \ne 0$.
Par conséquent, $l = 10$.

10.2.2 Théorème

Si une suite est croissante et non majorée, alors elle a pour limite $+\infty$.

Exemple On considère la suite (U_n) définie par $U_0 = 0$ et pour tout $n \in \mathbb{N}$, $U_{n+1} = 1 + U_n^2$. Soit $f: x \mapsto 1 + x^2$.

1. Tracer C_f dans un repère orthonormé. En déduire les 4 premiers termes sur l'axe des abscisses. Conjecturer le comportement de (U_n) .



 (U_n) semble croissante de limite $+\infty$.

2(a) Démontrer que (U_n) est croissante.

$$U_{n+1} - U_n = 1 + U_n^2 - U_r$$

$$=U_n^2-U_n+1$$

$$\Delta = (-1)^2 - 4 = -3$$

U_{n+1} - U_n = 1 + U_n² - U_n = U_n² - U_n + 1 $\Delta = (-1)^2 - 4 = -3$ U_n² - U_{n+1} est du signe de 1, c'est à dire positif.

(b) Démontrer que (U_n) n'est pas majorée.

Si (U_n) était majorée comme (U_n) est croissante alors (U_n) serait convergente de limite l.

$$\lim_{n \to +\infty} (1 + U_n^2) = 1 + l^2$$

$$\lim_{n \to +\infty} (1 + U_n) = 1$$
et $\lim_{n \to +\infty} U_{n+1} = l$
 l vérifierait : $l = 1$

$$l$$
 vérifierait : $l = 1 + l^2$

$$\Leftrightarrow l^2 - l + 1 = 0$$

$$\Delta = -3 \Rightarrow \text{Pas de solution}.$$

Contradiction Par conséquence, (U_n) n'est pas majorée.

(c) En déduire la limite de (U_n) .

 (U_n) est croissante et non majorée donc par théorème $\lim_{n\to+\infty}U_n=+\infty$

Démonstration Soit A un réel.

A n'est pas un majorant de (U_n) .

Il existe un terme U_N tel que $U_N > A$.

Pour tout entier n > N, $U_n \ge U_N > A$ donc $U_n \in]A; +\infty[$

A; $+\infty$ [contient tous les termes à partir d'un certain rang.

Conclusion $\lim_{n\to+\infty} U_n = +\infty$

10.2.3Suite croissantes et convergentes

Théorème Si une suite (U_n) est croissante et convergente de limite l alors pour tout $n \in \mathbb{N}$, $U_n \leq l$. ROC

Démonstration On démontre ce théorème par l'absurde.

Soit (U_n) une suite croissante et convergente de limite l.

Supposons qu'il existe un entier $N \in \mathbb{N}$ tel que $U_N > l$.

Comme (U_n) est croissante pour tout $n \in \mathbb{N}$, si $n \geq N$ alors $U_n \geq U_N > l$.

Comme (c_n) and $U_n > l$ $U_N = l + \epsilon \ (\epsilon > 0)$ L'intervalle $]l - \epsilon; \underbrace{l + \epsilon}_{U_N} [$ ne contient aucun des termes U_n pour un $n \ge N$. Cela contredit $\lim_{\substack{n \to +\infty \\ \mathsf{X}}} U_n = l$.

