Chapitre 12

Transformation en chimie, aspect microscopique

12.1 Polarisation d'une liaison

12.1.1 Électronégativité

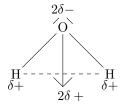
L'électronégativité est une grandeur relative qui traduit la capacité d'un élément chimique à attirer à lui les électrons d'une liaison covalente.

L'électronégativité augmente quand on se déplace vers la droite et vers le haut du tableau : $\chi \not \prec$. Les éléments les plus électronégatis sont : F, N, O, Cl.

12.1.2 Barycentre

12.1.3 Molécule apolaire

Une molécule apolaire n'est pas polarisée. Le barycentre des charges \oplus et des charges \ominus se superposent. Une molécule est apolaire si ses atomes ont la même électronégativité.


12.1.4 Molécule polaire

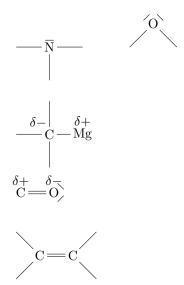
Une molécule diatomique est polaire si ses atomes ont une électronégativité très différente.

A est très électronégatif par rapport à B.

$$\frac{\delta + \delta - \delta}{H - Cl}$$

Chlorure d'hydrogène

12.2 Sites donneurs et accepteurs d'électrons


12.2.1 Mécanisme réactionnel

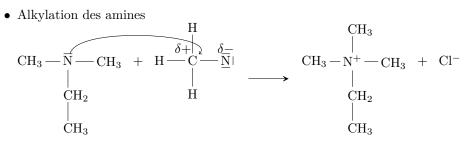
L'équation bilan ne donne qu'un aspect macroscopique de la transformation alors que le mécanisme réactionnel va donner toutes les étapes nécessaires à la transformation du réactif en produit. Cette analyse réactionnelle est basée sur l'échange d'électrons entre des sites donneurs et des sites accepteurs de doublets d'électrons.

12.2.2 Sites donneurs d'électrons

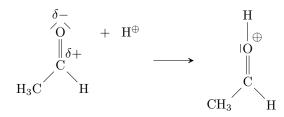
Les sites donneurs d'électrons sont souvent des atomes ayant des doublets non-lians ou les porteurs d'une charge électrique négative.

1

12.2.3 Sites accepteurs de doublets d'électrons


Ce sont les entités chimiques ayant une charge postive.

$$H^+, Li^+$$


$$C = O$$

$$\begin{array}{ccc}
\delta + & \delta - \\
C - \overline{Cl}
\end{array}$$

12.3 Exemples de mécanismes réactionnels

• 2, 4 - DNPH

